Как устроены нейросети, каковы их возможности, риски и перспективы?

РБКHi-Tech

Илья Макаров: «Люди не готовы к ошибкам нейросетей»

Еще в прошлом году редко кто что-то слышал о нейросетях, а уже в этом нейросеть может стать главным словом года во всем мире. Что это за технология, как устроены нейросети, каковы их возможности, риски и перспективы? Ответы на эти вопросы дал «РБК Трендам» эксперт Илья Макаров

Беседовала Анна Арбузова

Илья Макаров, руководитель группы «ИИ в промышленности» Института AIRI, директор Центра искусственного интеллекта МИСИС

Отделить кошек от собак

РБК: Давайте сразу проясним: что такое нейросеть и как она устроена?

И. М.: Чисто технически — это набор математических конструкций, которые отвечают за обработку разного типа данных. Другими словами, это математическая модель, которая обрабатывает входные данные и выдает некий результат на выходе.

Для каждой модели нейронной сети есть математическое описание, которое задает, как эта нейросеть выглядит, какие у нее есть обучаемые параметры. Например, предиктивная модель нейросети. Допустим, на одной картинке изображены коты, на другой — собаки. На выходе у вас есть класс — кот или собака. Что делает нейронная сеть? Она преобразует исходный сигнал к выходу, который интерпретируется как некоторая вероятность. Вероятность класса у одного будет 0,8, а у другого — 0,2. Тогда итоговое решение будет приниматься как наиболее вероятный класс. Это и будет предсказанием нейросети.

РБК: Искусственный интеллект, сложный алгоритм, машинное обучение. К каким из этих понятий можно отнести нейросеть?

И. М.: Нейросеть относится ко всему вместе. Ее можно назвать стохастическим алгоритмом, потому что у нее есть параметры, которые подбираются алгоритмом обучения. Нейросеть точно относится к машинному обучению, потому что нам нужно ее обучить, чтобы она работала. К искусственному интеллекту ее можно отнести из-за возможности реплицировать какие-то задачи, которые делает человек, и качество работы нейросетей будет не хуже.

РБК: Какие модели нейронных сетей существуют и какие задачи они решают?

И. М.: Сейчас очень много разных моделей. В зависимости от типа данных применяются разные технологии. Например, рекуррентные нейронные сети пытаются запомнить информацию из предыдущей части последовательности и использовать ее при обработке следующего участка последовательности. Графовые нейросети агрегируют информацию из вершины графа и от всех ее соседей в графовых структурах. Сверточная архитектура с помощью фильтров раскладывает картинку на простые паттерны, которые можно интерпретировать для задач классификации. Для генерации картинок используется диффузионная модель нейросети. Она сначала делает из картинки «белый шум», а потом пытается ее восстановить и генерирует новое изображение.

РБК: Не прошло и года, как мир заговорил о феномене нейросетей: в июле 2022-го началось открытое тестирование генератора изображений Midjourney, в ноябре был запущен чат-бот ChatGPT от компании OpenAI. А что способствовало прорыву в развитии нейросетей?

И. М.: На самом деле нейросети были популярны еще в XX веке. Но для их массового развития не хватало возможностей оборудования. Прорыв произошел в 2012 году, когда на международном соревновании ImageNet нейросеть смогла классифицировать изображения не хуже человека. Тогда стало понятно, что нейронная сеть — очень простая конструкция, которая может работать.

Начиная с 2014–2015 годов стали появляться первые работы на генеративном ИИ, которые реально заслуживают внимания. Это прогресс, потому что такая технология позволяет генерировать много данных. Данные, с одной стороны, могут улучшать результаты предиктивного ИИ, а с другой — создавать контент.

На мой взгляд, прогресс современных генеративных моделей искусственного интеллекта произошел за счет развития диффузионных моделей. Однако, чтобы нейросети корректно изображали, например лица и руки, нужно, во-первых, большое количество данных для обучения, во-вторых, внимание к деталям со стороны разработчиков.

Людей и природу нейронные сети уже хорошо научились генерировать. Но всегда есть над чем работать. Этим как раз и занимаются ученые. Они придумывают все больше моделей, которые повышают визуальное качество изображения и позволяют менять семантические параметры. Например, цвет глаз, наличие веснушек на лице, цвет волос, прическу. Если это можно сделать, условно, передвижением ползунка, то такие архитектуры представляют наибольшую ценность для продуктовых решений. Это позволяет перейти к нейроредакторам, в которых можно изменять разные параметры, стабильно и качественно генерируя контент.

Запрос на сверхразум

РБК: Что значит для науки прогресс нейросетей?

И. М.: Технологии, над которыми работают ученые, наконец дошли до масс. Причем скорость дохождения оказалась гораздо выше, чем все, что было до этого. Мы живем в эпоху потребления, в том числе цифрового контента. Блогеры мне рассказывают, что они просят ChatGPT сгенерировать сценарий ролика, другую нейросеть — сгенерировать видео со своей говорящей головой по этому сценарию, третью — озвучить видео, четвертую — добавить фон. То есть, комбинируя большое количество генеративных моделей, они создают контент и управляют им. Это стоит копейки по сравнению с созданием такого контента людьми.

Мы переходим к тому, что базовые технологии — машинная генерация речи, видео, текста — теперь доступны не только ученым, но и обществу.

РБК: Какие задачи помогают решать нейросети в разных сферах науки?

И. М.: Распознавание старинных рукописных текстов, автоматический перевод, восстановление старых фотографий и источников, определение авторства картин. В социологических исследованиях ИИ позволяет реально оценить настроения людей. В психологии искусственный интеллект профилирует личности и выстраивает определенный паттерн поведения. Существуют чат-боты, которые помогают справляться с депрессией. Философы стали исследовать языковые модели в попытках найти сверхразум, Бога или отражение своих философских взглядов. Применений очень много, важно понимать, как это работает.

РБК: Кому принадлежат права на произведение, которое сгенерировала нейросеть?

И. М.: Сейчас в США приняли первое решение о том, что если вы несколько раз делали промпт-инжиниринг (проще говоря, формулировали запросы боту и подсказки) или несколько раз как-то обрабатывали результат нейросети, то вы можете заявить на результат свои права. Это попытка баланса между тем, что хочет общество, и тем, что хочет регулятор.

Регулятор хочет сказать, что все, что сгенерировано ИИ, не облагается авторским правом. Это, на мой взгляд, неправильно. Нейросети — это способ быстрее получить результаты. Вообще никакой регулятор без команды ученых не может определить, было произведение сгенерировано нейросетью или создано вручную. Одно из решений — внедрение невидимых водяных знаков или зависимостей между пикселями, которые могут сигнализировать о том, что произведение сгенерировала нейросеть.

Позиция любого пользователя — произведение появилось только благодаря введенному им запросу. Разработчики же хотят получать процент за использование их технологии пользователями. Поэтому вотермарки — баланс между желаниями всех сторон.

РБК: А что, кроме споров об авторских правах, может дать работу юристам?

И. М.: Например, данные, на которых обучается нейросеть. В выборку может попасть ваше фото из интернета. Представим, что нейросеть научилась генерировать изображения, похожие на вас. По европейским и американским законам можно запретить использование своего лица на любой фотографии. Однако сложно исключить фотографии из обучающей выборки и переобучить нейросеть с нуля.

Я не против, чтобы мое лицо использовали для обучения и генерации изображений. А если меня вставят в потенциально неприличный дипфейк, то я не буду рад этому, но и защититься никак не смогу.

В Китае ставят во главу угла разработку продукта, и все, что ведет к ее ускорению, разрешено. Если в России ввести положение, что на каждую фотографию нужно получить письменное разрешение да ждать его по почте, то вся разработка встанет. Если в соседних странах развитие будет идти бешеными темпами, а у нас нет, то это плохо отразится на отрасли. На мой взгляд, нужно сейчас дать возможность сформироваться рынку, сформировать продукты на основе генеративного ИИ. Потом уже что-то запрещать. Если будут какие-то спорные моменты, то решать их в пользу людей.

Квантовый компьютер IBM Q System One

Без права на ошибку

РБК: Какие риски сопровождают развитие нейросетей и ИИ?

И. М.: Во-первых, появляются этические проблемы. Возьмем, к примеру, делопроизводство. В США провели эксперимент — попросили ИИ предсказать по текстовому описанию виновника происшествия. В результате больше всего правонарушений он «зафиксировал» у афроамериканцев. Дело в том, что алгоритм выучил распределение, которому его обучили. Оказалось, что в выборке изначально была заложена дискриминация по цвету кожи на основе статистических данных.

Если данные, которые подаются ИИ, неправильные как с точки зрения чистоты информации, так и с точки зрения этической составляющей, то нужно в алгоритм закладывать такие функции, чтобы он не мог использовать, например, сведения о расе, поле, цвете кожи, если эти данные не имеют отношения к принятию решений. Но, к сожалению, ИИ может предсказать эти параметры. Поэтому нужно подготавливать данные так, чтоб он не мог выучить эти зависимости.

Во-вторых, если говорить о ChatGPT, то в него заложена система исправления ошибок взаимодействия с юзером, чтобы оставлять у пользователя наиболее приятное впечатление от общения. Можно, например, доказать, что дважды два равно пяти.

По запросу, сколько будет дважды два, нейросеть сначала выдаст правильный ответ. Но если сказать, что, например, моя жена считает, что дважды два равно пять, то нейросеть через некоторое время сдастся и ответит, что ее обучающая выборка покрывает информацию в интернете до 2021 года, этот факт может быть в нее не включен, и в итоге согласится, что дважды два равно пяти.

Текущий генеративный ИИ пытается дать ответ, которым пользователь останется доволен. Но это не означает, что он генерирует абсолютно правдоподобные вещи. И это действительно современная проблема.

И, в-третьих, люди не готовы принимать ошибки ИИ. Каждый день происходят сотни аварий, но если пешехода сбивает беспилотник, так его тут же пытаются запретить.

РБК: Как распознать контент, который генерирует нейросеть?

И. М.: Это открытый вопрос. В целом — никак. Ученые занимаются разработкой методов определения fake news. Многие исследования потом интегрируются в реальные продукты. В компаниях в тестовом режиме внедряются автоматические средства, которые помогают определять фейковые новости. Если этой же информации нет на иностранных языках или в наиболее цитируемых СМИ, то, возможно, это фейк.

Мой совет исключительно как человека — читайте меньше новостей, соблюдайте правила цифровой гигиены, тратьте больше времени на самообразование.

Незаменимых нет

РБК: Как нейросети, ИИ повлияют на рынок труда?

И. М.: Еще несколько лет назад все говорили, что повлияют, но не сильно. Например, под угрозой окажется профессия водителя. Если вас может отвезти автономный трамвай или автобус, то пассажиры не будут возражать при условии, что это безопасная технология.

Сейчас же с развитием нейросетей и ChatGPT под угрозой оказывается гораздо большее количество профессий. Из-за этого могут снизиться зарплаты или вырасти безработица. Например, в консалтинге людей, которых несколько лет учили делать красивые презентации, сейчас могут заменить нейросетью ChatBA. Этот сервис сделает презентацию на уровне обученного специалиста.

Наиболее крупные компании будут внедрять искусственный интеллект, чтобы ускорять бизнес-процессы и сокращать операционные расходы. Многие задачи ИИ может сделать не хуже, чем человек, в том числе творческие. Один из проектов, в котором я участвовал, развивал генеративный ИИ в сторону моды. Представим, что вы можете нанять человека с неплохой фигурой, а лицо и прическу приделать нейросетью. Нейросеть генерирует очень красивых людей, которых мы редко встретим в реальной жизни. И цена самой съемки вместо сотен тысяч рублей будет измеряться лишь стоимостью вычислений в облаке и услуг разработчика.

РБК: Может ли нейросеть заменить людей в профессиях, где от компетенции исполнителя зависит жизнь человека?

И. М.: Нейросеть может заменить, но человек не готов принять решения и ошибки, которые существенно значимы для наших с вами жизней. Если пациент заболел, то определить, ОРВИ это или бактериальная инфекция, можно только по анализу крови. Большинство из нас его не сдают. В этом плане любая нейросеть может имитировать врача и более-менее отвечать так же, как он, — на основе данных анализа. Однако ошибки врача мы принять можем, а нейросети — нет. Для постановки тяжелых диагнозов, например онкологии, решение должен все-таки принимать человек. При этом нейросеть может помочь ускорить процесс выявления болезни и выстроить лечение, которое продлит тяжелобольному пациенту жизнь.

РБК: Сможет ли нейросеть заменить и ученых?

И. М.: Как ученый, я могу сказать, что да. Но на ближайшие лет 10–20 я об этом не беспокоюсь. Во многих задачах автоматические решения не работают. Экспертизу и интуицию, которая нарабатывается у ученого, очень сложно заменить.

РБК: Что нужно делать, чтобы не остаться без работы?

И. М.: Нужно уметь пользоваться новыми инструментами и продолжать учиться.

Пределы совершенству

РБК: Как дальше будут развиваться нейросети и есть ли этому предел?

И. М.: Первый предел — возможности оборудования. С точки зрения размера чипов мы уже подходим к определенному пределу, который можно преодолеть на основе либо чипов на фотонике, либо квантовых компьютеров. Здесь есть большие ограничения. Квантовый компьютер помогает в развитии генеративного ИИ, но почти бесполезен для предиктивного ИИ.

Второй предел — трудности с созданием ИИ, который учится сам по себе, извлекает какую-то полезную информацию, оптимизируя какие-то промежуточные задачи. Модели, которые решают такие задачи, уже есть, но работают пока недостаточно хорошо. И получится ли добиться здесь прогресса или нет — непонятно. Они все еще уступают моделям, которые обучаются на данных, размеченных вручную.

Третий предел — финансовый. Сейчас только гиганты, как OpenAI, могут позволить себе дорогостоящую инфраструктуру и работать над самообучающимися моделями ИИ. Поэтому дальнейшее развитие нейросетей и их продуктовая реализация будут зависеть от поддержки ученых.

Четвертый предел определяется тем, что прогресс робототехники гораздо ниже, чем ИИ. Рано или поздно инженеры и робототехники решат проблему точности движений робота и придумают небольшой, но емкий аккумулятор, который поместится в робота и позволит ему долго работать. Тогда появится возможность внедрять ИИ в роботов-помощников, которые описываются в художественной культуре.

Пятый предел — восприятие нейросетей человеком. Важно, чтобы человечество продвинулось в понимании, что искусственный интеллект — это наш помощник и им нужно уметь правильно пользоваться.

Фото: Михаил Гребенщиков для РБК; IBM

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Олег Шибанов: «Нейроэкономика и нейрофинансы уже интригуют некоторыми результатами» Олег Шибанов: «Нейроэкономика и нейрофинансы уже интригуют некоторыми результатами»

К чему приведут новые технологии в экономике

РБК
Быть или не быть, или о судьбе бумажных библиотек Быть или не быть, или о судьбе бумажных библиотек

Цифровизация не уменьшает, а только меняет ценность настоящих книг

Наука
Ольга Еремина: « Людям хочется что-то делать, создавать новое, свое» Ольга Еремина: « Людям хочется что-то делать, создавать новое, свое»

Кто сегодня открывает малый и средний бизнес?

РБК
«Певчие избранники России»: что мы знаем о дроздах — обитателях лесов и городов «Певчие избранники России»: что мы знаем о дроздах — обитателях лесов и городов

У этих прожорливых пернатых, с которыми воюют садоводы, есть немало достоинств

Вокруг света
Александр Чулок: «Ведь не граблями и вилами строить новую экономику» Александр Чулок: «Ведь не граблями и вилами строить новую экономику»

Заглядываем в будущее вместе с экономистом и прогнозистом Александром Чулоком

РБК
Коммерциализация — главный козырь любого университета Коммерциализация — главный козырь любого университета

Автобус для Арктики, удивительный бетон и модули для управления техникой

Наука
Фармконвейер про запас Фармконвейер про запас

Открытие новых фармпроизводств призвано помочь увеличению выпуска лекарств

Эксперт
Цветок-канделябр Цветок-канделябр

Удивительные растения из семейства Кутровые

Наука и жизнь
Как птицы учатся использовать звёздный компас Как птицы учатся использовать звёздный компас

Биологи связали популяции птиц, зимующих в одном районе, а гнездящихся в другом

Наука и жизнь
Биоспелеология: что ищут биологи в пещерах Биоспелеология: что ищут биологи в пещерах

Какая фауна обитает в пещерах?

Наука и жизнь
Наше время Наше время

Seasons — это про смену времен года, про ритм. Наша команда живет в нем

Seasons of life
В доме на Невском В доме на Невском

Интерьер этой квартиры привлекает изяществом и оригинальными решениями

Идеи Вашего Дома
Крылатая дюжина Крылатая дюжина

У бабочек найдется чем удивить нас, кроме их знаменитой красоты!

Вокруг света
Центр единения Центр единения

Идея оформления этого интерьера началась с коллекции картин

Идеи Вашего Дома
Таиланд. Превращение в Эдем Таиланд. Превращение в Эдем

Как в Таиланде обстоит дело с яхтингом, мы решили узнать поподробнее

Y Magazine
Что знали наши бабушки и о чем забыли мы Что знали наши бабушки и о чем забыли мы

Анна Вокина изучает традиционные праздники на глубинном уровне

Seasons of life
Нитками вместо красок Нитками вместо красок

Журнал и картины Веры — нежные, чуть наивные, живые — соединились

Seasons of life
Неандертальский зоопарк Неандертальский зоопарк

15 лет назад ученые организовали палеогенетическую лабораторию

Наука
След тигра След тигра

Как складывается судьба проекта «Амурский тигр»

Вокруг света
Быстрее, тише, сильнее Быстрее, тише, сильнее

Sunreef Yachts: большие возможности катамаранов можно сделать еще больше

Y Magazine
Как Египет заработал на раскопки Как Египет заработал на раскопки

Гробница KV 62 остается единственным не разграбленным погребением в Долине Царей

Наука
Овцеводство поддержат по-новому Овцеводство поддержат по-новому

Новая программа овцеводства должна учесть специфику развития отрасли

Агроинвестор
Princess S62: встреча на подиуме Princess S62: встреча на подиуме

Princess S62 вызвала наибольший интерес у посетителей на выставке

Y Magazine
Прострелы, или Сны наяву Прострелы, или Сны наяву

Весной в степях, по сухим лугам можно увидеть сказочно красивый цветок

Наука и жизнь
Калейдоскоп фактур Калейдоскоп фактур

Квартира в стиле «мягкого» и комфортного лофта

Идеи Вашего Дома
Эпатаж: перезагрузка Эпатаж: перезагрузка

Как Поль Сезанн написал новую версию известной картины Эдуара Мане

Вокруг света
Интервью Интервью

Али Онгер и Алексей Горский: почему сейчас самое время покупать яхту в Турции

Y Magazine
Полуподводный флот Полуподводный флот

Полупогружные транспортные суда: новое для российского судостроения направление

ТехИнсайдер
Все 78 удовольствий! Все 78 удовольствий!

Интересные ощущения охватывают, когда поднимаешься на борт флагмана Settantotto

Y Magazine
Рыба растет Рыба растет

Российские инвесторы стали активнее вкладываться в развитие аквакультуры

Агроинвестор
Открыть в приложении