В каких отраслях могут устроить революцию квантовые сенсоры?

РБКHi-Tech

Шестое чувство. В каких отраслях могут устроить революцию квантовые сенсоры?

Квантовые сенсоры нового поколения — это пока еще в основном лабораторные разработки. Однако в перспективе они будут применяться во множестве отраслей и вырастут в многомиллионную индустрию

Текст Анастасия Дергачева

У «холодных» атомов есть не только коммерческий потенциал: они также пригодятся в сенсорах, которые используют экологи и астронавты

Квантовые сенсоры нового поколения — отдельное направление рынка квантовых технологий. Такие сенсоры обладают уникальным сочетанием свойств: они имеют микроскопический размер при сверхвысокой чувствительности. Их разработка и внедрение ведутся лишь последние несколько лет, а принципы работы основаны на таких явлениях квантовой механики, как суперпозиция, квантовая запутанность и квантовое измерение.

«Все виды сенсоров высокого технического уровня являются квантовыми», — рассказывает в интервью журналу РБК профессор Университета Саутгемптона Тим Фригард. Сенсоры есть в любом смартфоне: камера, акселерометр, магнитометр, датчик освещенности, датчик приближения, сканер отпечатков пальцев и другие. Однако разработки последнего времени отличаются от нынешних массовых решений — они были сделаны уже во время так называемой второй квантовой революции.

Разнообразные сенсоры нового поколения могут дать мощный импульс развитию сразу нескольких индустрий — нефтегазовой отрасли, транспорту, строительству и т.д. По оценке консалтингового агентства Persistence Market Research, к 2025 году мировой рынок квантовых сенсоров вырастет до $329,4 млн. Однако сегодня большинство продуктов второй квантовой революции еще не покинули стен лабораторий и пока находятся «в процессе преобразования в демонстрационные прототипы», замечает профессор Фригард.

Журнал РБК изучил самые перспективные варианты применения новых квантовых сенсоров.

МРТ молекулы

Медицина ждет внедрения «сенсоров будущего» как ни одна другая сфера. Если сегодня доктора исследуют организм на уровне органов, то квантовая революция позволит заглянуть буквально в каждую клетку тела.

В 2017 году группа исследователей из Университета Штутгарта и Института исследований твердых тел Общества Макса Планка разработала первый квантовый сенсор, способный, по словам руководителя группы профессора Йорга Врактрупа, «разложить молекулу практически на отдельные атомы».

Сенсор умеет «сканировать» белки и потенциально должен уметь обнаружить пораженные белки на самой ранней стадии одного из самых опасных в мире заболеваний — болезни Крейтцфельдта — Якоба. Это заболевание, также называемое «коровьим бешенством», разрушает головной мозг, при этом магнитно-резонансная томография (МРТ) не позволяет диагностировать его с необходимой точностью.

В отдаленном будущем умение проникать в отдельную клетку также может помочь в создании искусственного мозга, не уступающего по интеллекту человеческому.

Космический гравиметр

Квантовый гравиметр — разработка Университета Бирмингема. Этот сенсор поможет в поисках новых месторождений нефти и других полезных ископаемых. Оснащенные им устройства также научатся обнаруживать пустоты и провалы под землей, создающие угрозу для работы в шахтах, описывали потенциал изобретения аналитики Persistence Market Research. Строительство — еще одно вероятное поле «деятельности» сенсора: инженеры смогут более точно проектировать и размещать подземные коммуникации.

Технология гравиметра основана на «холодных» атомах: охлажденные до температуры, близкой к абсолютному нулю, атомы становятся сверхчувствительными к минимальным изменениям силы тяжести и фиксируют эти изменения для измерителя.

«Холодные» атомы планируется использовать не только в бизнесе: с их помощью также можно мониторить массу мировых льдов, океанских течений и уровень моря. А британская компания Teledyne e2v совместно с Clyde Space и Университетом Бирмингема готовит проект по производству «холодных» атомов в космосе, на борту специального спутника. Миссия получила название CASPA (Cold Atom Space Payload — «Полезная нагрузка на холодный атом»).

Собственные разработки гравитационных сенсоров есть и у Министерства обороны Великобритании. Ведомственная лаборатория разрабатывает устройства для отслеживания изменений физических свойств объектов «сквозь стены». Технология, надеются исследователи, приведет к научным прорывам в области навигации и станет альтернативой спутникам GPS, уязвимым для хакерских атак.

«Квантовая пленка»

В ноябре 2017 года Apple приобрела стартап InVisage, разработавший «квантовую пленку» — матрицу на основе квантовых точек. Сенсор имеет расширенный динамический диапазон и высокую светочувствительность. Ранее стартап привлек $98 млн от InterWest Partners, Nokia Growth Partners и других инвесторов.

Современные цифровые матрицы в фотоаппаратах и смартфонах делают на основе кремниевых чипов. По сравнению с аналоговой пленкой у них меньший диапазон, то есть камера может передать меньше тонов между светом и тенью. При контрастном освещении яркость объектов может не «уместиться» в динамический диапазон матрицы — например, на фотографиях «проваливается» небо.

В сенсоре Quantum Film свет сначала проходит через матрицу цветных фильтров, а затем попадает на слой с квантовыми точками — они нанесены на него подобно краске. Особое расположение элементов сенсора увеличивает способность воспринимать свет, что обеспечивает больший динамический диапазон и лучшее качество изображения в условиях низкой освещенности.

Всего у InVisage 27 патентов, но воспользуется ли Apple «квантовой пленкой», пока неизвестно. «Apple время от времени покупает небольшие компании, но мы не обсуждаем наши цели», — прокомментировал представитель компании поглощение InVisage порталу TechCrunch.

Квантовые часы как универсальный сенсор

Квантовые часы — разновидность атомных часов и самый необычный сенсор: они ничего не «чувствуют» непосредственно, только определяют время и при этом могут быть использованы для измерения других величин, например гравитации. «Тикают» в них атомы. Стандартом измерения времени считается атом цезия-133, в последних квантовых часах используются атомы стронция, охлажденные при помощи лазера, а также «квантовый» газ.

Пример использования устройства — атомные часы Национального института стандартов и технологий США, в 37 раз более точные, чем международный стандарт времени. Часы не отстанут и не ускорятся ни на секунду в течение более 15 млрд лет.

Изменение «скорости тикания» атомов происходит под действием силы тяжести, магнитного и электрического полей и других явлений. Чем меньше чувствительность, тем точнее часы. При этом часы разных видов чувствительны к разным явлениям. Большая чувствительность позволяет относить их к сенсорам.

В будущем квантовые часы могут прийти на смену часам, которые используются в системах GPS и ГЛОНАСС. По прогнозу Persistence Market Research, всплеск спроса на технологию случится, как только она будет доведена до массового рынка. Квантовые часы пригодятся на рынках, которые, как ожидается, резко увеличат объем в ближайшие годы: интернет вещей, беспилотные автомобили и другие автономно управляемые устройства с необходимостью точных замеров времени.

Фото: NASA / JPL-Caltech

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Павел Воронин: «В ближайшие три года ИИ-решения начнут приносить реальную экономию бизнесу» Павел Воронин: «В ближайшие три года ИИ-решения начнут приносить реальную экономию бизнесу»

Гендиректор МТС Web Services Павел Воронин — об автоматизации и нейросетях

РБК
«Мозг – самый важный орган» «Мозг – самый важный орган»

Что такое память? Где она «хранится»? Почему мы помним не всё?

Знание – сила
Огненная саламандра Огненная саламандра

Мифический «дух огня» с точки зрения биологии

Вокруг света
Спинной мозг самолета – автопилот Спинной мозг самолета – автопилот

Пока человек толком не понимал, что такое полет, автопилот был не нужен

Наука и техника
Тучерезы Тучерезы

Какие современные здания имеют шансы пережить столетия?

ТехИнсайдер
Всем пригож песец Всем пригож песец

Песец – полярный кочевник с удивительной выносливостью

Знание – сила
Зерно останется малодоходным Зерно останется малодоходным

Хороший урожай не позволит ценам сильно расти

Агроинвестор
В «Зеленой Долине» разместится 40 тыс. голов КРС В «Зеленой Долине» разместится 40 тыс. голов КРС

Агрохолдинг «Зеленая Долина» возведет крупнейший в Европе молочный комплекс

Агроинвестор
«Красный» чай в «Бирюзовой чайхане» «Красный» чай в «Бирюзовой чайхане»

Ташкентец Ширяевец стал проводником поэта Есенина в мир Туркестана

Знание – сила
Биосигнатуры и их разоблачение: жизненно важные улики Биосигнатуры и их разоблачение: жизненно важные улики

Судить о возможном существовании иной жизни приходится по косвенным признакам

ТехИнсайдер
Суда-ветераны Суда-ветераны

Возраст большинства речных судов в России превышает 50 лет

Наука и техника
ИИ — иллюзия интеллекта? ИИ — иллюзия интеллекта?

Что же такое искусственный интеллект? Какие опасности он может таить?

Наука и жизнь
Как искусственный интеллект переписывает правила медиарынка Как искусственный интеллект переписывает правила медиарынка

О том, где проходит граница между помощником человека и его заменой

ТехИнсайдер
Самые быстрые Самые быстрые

Когда речь заходит о скорости, победитель может быть только один

ТехИнсайдер
Одна маленькая лягушка и 10 000 мышей Одна маленькая лягушка и 10 000 мышей

Почему батрахотоксин смертелен для человека, но безвреден для маленькой лягушки?

Наука и жизнь
Скифы Северного Причерноморья: легенды и реальность Скифы Северного Причерноморья: легенды и реальность

Как греки превратили скифов в символ воинской чести и простоты

Знание – сила
Искусственный интеллект смотрит в небо Искусственный интеллект смотрит в небо

Как технологии ИИ стали единственным средством для изучения космических глубин

Наука и жизнь
Боспор: царство греков и варваров Боспор: царство греков и варваров

Почему события, происходившие в Боспоре, имели для Афин большое значение?

Наука и жизнь
Сеть судного дня Сеть судного дня

Инновационная система, способная обеспечить стабильную работу транспорта

ТехИнсайдер
Учимся понимать наши растения Учимся понимать наши растения

Кажется, чего уж проще: полить цветы. Но и здесь есть ряд тонкостей...

Наука и жизнь
Восточное путешествие с Агатой Кристи Восточное путешествие с Агатой Кристи

Детективы, Восток и археология – всё это сошлось вместе в судьбе Агаты Кристи

Знание – сила
Биосфера и пластик Биосфера и пластик

Когда-нибудь ученые, наверное, будут выделять пластиковый век

Наука и техника
Устаревшие технологии Устаревшие технологии

Вахта на Европе длится долго. Всё приедается

Наука и жизнь
Есенин: божественный бросок вперед Есенин: божественный бросок вперед

Почему творчество Есенина до сих пор вызывает отклик у читателей?

Знание – сила
Ежевичный холм и его обитатели Ежевичный холм и его обитатели

Выход жизни на сушу – вопрос, интересующий не только специалистов

Наука и техника
Жизнь с начала времён Жизнь с начала времён

Как «каменные страницы» отражает биографию планеты Земля

Наука и жизнь
Наука в фантастике: эпизоды истории Наука в фантастике: эпизоды истории

Смельчаки, которые предлагали читателям космооперу с коммунистическим колоритом

Наука и жизнь
Роботы-манипуляторы: от самодельной руки до промышленных коботов Роботы-манипуляторы: от самодельной руки до промышленных коботов

Как устроены манипуляторы и как можно сделать простейшего робота своими руками

Наука и техника
Переход на отечественный софт: комфорт превыше всего Переход на отечественный софт: комфорт превыше всего

Как осуществлялось импортозамещение в сфере кадастра и геодезии

Наука и техника
Первые шаги стратегической авиации Первые шаги стратегической авиации

О том, ценой какого труда, в каких муках рождалась стратегическая авиация

Наука и техника
Открыть в приложении