Когда ожидать квантового превосходства и какие изменения оно повлечет в будущем

РБКFan

Алексей Федоров: «И дея квантовых технологий уже необратимо изменила мир»

В наши дни в разных странах активно развиваются десятки проектов, связанных с квантовыми вычислениями. Когда же ожидать полезного квантового превосходства и какие изменения оно повлечет в будущем? Об этом рассказывает физик Алексей Федоров

Алексей Федоров, научный руководитель группы «Квантовые информационные технологии» Российского квантового центра, создатель первого в мире квантового блокчейна для хранения и проверки финансовых данных

За последние десятилетия мир стремительно преобразился благодаря цифровым технологиям. Сегодня практически все аспекты жизнедеятельности общества неразрывно связаны с обработкой, передачей, хранением и защитой информации. Цифровизация проникает и в такие сферы, как, например, медицина и формирование облика «умного» индустриального производства.

Однако параллельно с развитием информационных технологий происходит еще одна революция, очевидная ученым и аналитикам, но еще далекая от своего пика, — квантовая революция.

Ограничения многих традиционных способов работы с данными можно будет преодолеть при помощи высокопроизводительных квантовых компьютеров, а надежно защитить данные помогут квантовое распределение криптографических ключей и постквантовые алгоритмы. Квантовые компьютеры сейчас динамично развиваются, их построением занимаются такие гиганты, как Google, IBM, Microsoft и Intel. Россия вошла в число стран, которые приняли долгосрочные программы развития — квантовые «дорожные карты».

Сегодня мы находимся на интересном рубеже: квантовые технологии начинают быть все ближе к практическому применению, однако на данный момент их использование не дает экономической выгоды. Увидим ли мы полезное превосходство от квантовых компьютеров в ближайшие несколько лет? По всей видимости, да. По крайней мере мы ближе к этому с каждым месяцем.

Квантовые компьютеры: от идеи до технологического превосходства

Квантовые компьютеры представляют собой класс вычислительных устройств, которые используют для обработки информации явления, характерные для отдельных квантовых систем, таких как атомы, ионы, фотоны и др. Ключевыми для квантовых вычислений являются суперпозиция — возможность квантовых систем быть «одновременно» в нескольких состояниях — и квантовая запутанность, проявляющаяся во взаимосвязи между квантовыми объектами.

Элементарными информационными единицами при работе квантового компьютера являются кубиты — квантовые «аналоги» классических битов информации. Как раз благодаря явлению квантовой суперпозиции кубиты могут быть и логическим нулем, и логической единицей одновременно (в отличие от классических битов, которые могут быть лишь в одном из этих состояний).

Идеи квантовых компьютеров появились в начале 1980-х годов в работах советского математика Юрия Манина, британского математика и физика Дэвида Дойча, а также американского физика Ричарда Фейнмана. Уже в середине 1990-х появились первые квантовые алгоритмы для работы на будущих квантовых компьютерах, которые заинтересовали бизнес. Например, оказалось, что с помощью квантовых компьютеров можно будет взламывать современные криптографические алгоритмы.

В определенных классах математических задач квантовые компьютеры могут продемонстрировать существенное превосходство над классическими технологиями. Примерами задач являются криптоаналитика, моделирование сложных систем, обработка больших данных (big data) и др. Существующие на данный момент квантовые компьютеры обладают десятками и сотнями «шумных» кубитов, что не дает возможность полностью раскрыть потенциал их использования. Однако такие компьютеры уже способны на определенных тестовых математических задачах обгонять суперкомпьютеры. Например, на решение тестовой задачи квантовому компьютеру хватает несколько часов и минут, тогда как на классическом оно заняло бы больше 45 лет. При этом уже сейчас есть возможность решать прикладные задачи небольшого масштаба, например из области химии и машинного обучения.

Ключевую роль для полезного квантового превосходства играет решение двух принципиальных задач. Во-первых, создание квантового процессора с большим количеством кубитов и низким уровнем ошибок. В одном сценарии это станет возможным благодаря прогрессу уже существующих систем, а в другом потребует поиска или разработки новых физических платформ для квантовых вычислений. Во-вторых, необходимо значительно расширить класс квантовых алгоритмов для решения прикладных задач. Прогресс движется по каждому из направлений, поэтому на масштабе четырех-пяти лет можно ожидать первые примеры применения квантовых компьютеров для полезных задач.

В качестве одного из потенциальных направлений для квантового превосходства можно рассматривать машинное обучение. Над применениями квантовых компьютеров для задач искусственного интеллекта работают ведущие научные группы по всему миру. Например, ученые из Российского квантового центра вместе с сингапурской компанией «Геро» разработали квантовый алгоритм машинного обучения для поиска новых типов лекарств, что позволило найти более 2 тыс. новых молекул с лекарственными свойствами.

Квантовая защита vs. квантовое нападение

Угроза современной криптографии возникает из-за возможности реализовать на квантовом компьютере эффективные алгоритмы для факторизации, что несет угрозу для криптографии с открытым ключом, а также ускорения поиска по неупорядоченным базам данных. Масштаб проблемы существенный: более 90% данных, передаваемых в интернете, станут открытыми при появлении квантового компьютера. Криптографические стандарты, например для электронных подписей, необходимо будет пересматривать.

Эпоха квантовых компьютеров предполагает два подхода к защите информации. Во-первых, это квантовое распределение ключей. Оно основано на кодировании информации в одиночные квантовые состояния. Во-вторых, решением является постквантовая криптография — набор криптографических алгоритмов, криптоанализ которых имеет сравнимый уровень сложности для классических и квантовых компьютеров.

Технология квантового распределения ключей уже готова к промышленному использованию, необходимы ускорение темпов адаптации технологий крупными компаниями и строительство городских сетей. Постквантовая криптография также уже готова для внедрения решений по защите широкого спектра приложений (мобильные, веб-приложения, цифровые подписи и т.д.). Прогресс в области квантовых компьютеров является очевидным драйвером для внедрения новых технологий защиты информации. Например, в США уже сейчас принят Акт квантовой кибербезопасности, регламентирующий переход на решения, устойчивые по отношению к атакам с квантовых компьютеров. В России ведется работа по стандартизации квантово-устойчивых алгоритмов. Их масштабное внедрение — это также вопрос ближайших трех-пяти лет.

«Дорожные карты» в квантовое будущее

В России основным драйвером развития квантовых технологий являются «дорожные карты», которые сейчас активно реализуются по направлениям квантовых вычислений и коммуникаций под кураторством «Росатома» и РЖД.

Результатом проектов в рамках «дорожной карты» по квантовым вычислениям в России уже стали два квантовых компьютера с 16 кубитами: один из них построен на ионной платформе, а другой — с использованием атомов. Также разработаны процессоры на сверхпроводниках и фотонах.

Проект по ионному квантовому компьютеру обладает важной особенностью. Благодаря поддержке в рамках проекта ЛИЦ и «дорожной карты» удалось реализовать кудитный квантовый процессор — новый способ построения масштабируемых квантовых компьютеров.

Следующие шаги — увеличение количества кубитов или кудитов, а также точности квантовых операций и демонстрация квантовых алгоритмов. При этом многие российские компании уже проявляют интерес к внедрению квантовых технологий.

Промышленные решения для квантового распределения ключей уже используются для построения магистральных и корпоративных квантовых сетей.

В заключение нужно сказать, что сама идея появления квантовых технологий уже необратимо изменила мир. Масштаб изменений трудно прогнозировать на сегодняшнем, уже значимом, но все еще достаточно раннем уровне развития. Вспоминая ранний этап развития полупроводниковой эры вычислений, можно задаться вопросом: хватит ли миру пяти квантовых компьютеров? Очевидно, что нет, так как уже сейчас их количество исчисляется десятками. Полезное же квантовое превосходство будет стимулировать их переход к индустриальному производству — для этого будет достаточно и одного реального кейса применения квантовых компьютеров с экономическим эффектом.

Фото: Lukas Schulze / Getty Images

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Тонкая материя Тонкая материя

Как инновационные и экоткани меняют индустрию моды

РБК
Птичий нюх Птичий нюх

С обонянием птицам не повезло — во всяком случае, так очень долго думали

Наука и жизнь
Она вышивает мечты Она вышивает мечты

Самая яркая звезда на небосклоне высокой моды Поднебесной — талантливая Гуо Пей

Y Magazine
Эверест как профессия Эверест как профессия

Высоко над нашими головами скрывается самая труднодоступная страна на планете

Вокруг света
Перезагрузка Перезагрузка

Sollers: продолжение следует

Автопилот
По наклонной По наклонной

Аэротруба, в которой можно летать в вингсьюте и остаться живым

ТехИнсайдер
От лифта на орбиту до встречи с марсианами От лифта на орбиту до встречи с марсианами

Какие инновации и тренды будут определять развитие космической отрасли

РБК
Дмитрий Крутов: «Карьерный путь человека будет максимально релевантным его способностям» Дмитрий Крутов: «Карьерный путь человека будет максимально релевантным его способностям»

Как изменится обучение в будущем

РБК
Лесная антилопа бонго Лесная антилопа бонго

Антилопа бонго — самая красивая и величественная среди антилоп

Знание – сила
Весы Роберваля Весы Роберваля

В рычажных весах точки опоры и подвеса чаш образуют равнобедренный треугольник

Наука и жизнь
Нейросоцсеть Нейросоцсеть

Разговор с креативным директором LOOKY Артемом Коноваловым

ТехИнсайдер
Новый Вавилон Новый Вавилон

В любой непонятной ситуации нужно строить что-нибудь колоссальное

ТехИнсайдер
Собирание земель русских Собирание земель русских

Кто поверит, что на месте Уральских гор когда-то плескался океан?

Вокруг света
Атмосфера дзен Атмосфера дзен

Актуальный микс современности и классики с природными мотивами

Идеи Вашего Дома
У природы нет плохой космической погоды? У природы нет плохой космической погоды?

Может ли из-за космической бури случиться инфаркт или инсульт?

Знание – сила
Если мир опрокинется Если мир опрокинется

Окончание фантастического рассказа Елены Ворон

Наука и жизнь
Философ у отверстого гроба Философ у отверстого гроба

Жизнь и смерть французского философа Николя де Кондорсе

Знание – сила
Тур де Кавказ Тур де Кавказ

На Geely Atlas Pro до Эльбруса и назад

Автопилот
Разумный Макс Разумный Макс

Флагманский кроссовер Chery дебютирует обновленным

Автопилот
Лариса Малькова: «Искусственный интеллект можно сравнить с энергией атома» Лариса Малькова: «Искусственный интеллект можно сравнить с энергией атома»

Где еще заявит о себе искусственный интеллект и как он повлияет на рынок труда

РБК
Андрей Коняев: «Наука теряет монополию на описание мира» Андрей Коняев: «Наука теряет монополию на описание мира»

Почему науку сравнивают с гаданием на картах таро

РБК
Гортензии на любой вкус и цвет Гортензии на любой вкус и цвет

Вторая половина лета и осень — пора цветения гортензий

Наука и жизнь
Космическая сила Космическая сила

Почему бы не построить солнечную электростанцию прямо в космосе?

ТехИнсайдер
Революция в астрономии XX века Революция в астрономии XX века

Виктор Амбарцумян — основоположник теории астрофизики в СССР

Знание – сила
Академик Маркс Штарк: главное — это творчество и любовь Академик Маркс Штарк: главное — это творчество и любовь

Маркс Штарк — о том, чему можно научиться у зимнеспящих организмов

Наука
Интерстеллар Интерстеллар

Испытываем внедорожные качества нового кроссовера Exeed RX

Автопилот
Промышленным гигантам нужны ферменты Промышленным гигантам нужны ферменты

Ученые создали новую технологию получения ферментов для промышленности

Наука
Сдвинувший материки Сдвинувший материки

Альфред Вегенер – человек, понявший, что континенты движутся

Вокруг света
Электрический ключ к прекрасному Электрический ключ к прекрасному

Ученые исследуют нейрофизиологические механизмы восприятия произведений живописи

Наука
Анна Меркулова: «Развитие метростроительства связано с цифровизацией» Анна Меркулова: «Развитие метростроительства связано с цифровизацией»

Как развивается транспортная инфраструктура в регионах

РБК
Открыть в приложении