Когда ожидать квантового превосходства и какие изменения оно повлечет в будущем

РБКFan

Алексей Федоров: «И дея квантовых технологий уже необратимо изменила мир»

В наши дни в разных странах активно развиваются десятки проектов, связанных с квантовыми вычислениями. Когда же ожидать полезного квантового превосходства и какие изменения оно повлечет в будущем? Об этом рассказывает физик Алексей Федоров

Алексей Федоров, научный руководитель группы «Квантовые информационные технологии» Российского квантового центра, создатель первого в мире квантового блокчейна для хранения и проверки финансовых данных

За последние десятилетия мир стремительно преобразился благодаря цифровым технологиям. Сегодня практически все аспекты жизнедеятельности общества неразрывно связаны с обработкой, передачей, хранением и защитой информации. Цифровизация проникает и в такие сферы, как, например, медицина и формирование облика «умного» индустриального производства.

Однако параллельно с развитием информационных технологий происходит еще одна революция, очевидная ученым и аналитикам, но еще далекая от своего пика, — квантовая революция.

Ограничения многих традиционных способов работы с данными можно будет преодолеть при помощи высокопроизводительных квантовых компьютеров, а надежно защитить данные помогут квантовое распределение криптографических ключей и постквантовые алгоритмы. Квантовые компьютеры сейчас динамично развиваются, их построением занимаются такие гиганты, как Google, IBM, Microsoft и Intel. Россия вошла в число стран, которые приняли долгосрочные программы развития — квантовые «дорожные карты».

Сегодня мы находимся на интересном рубеже: квантовые технологии начинают быть все ближе к практическому применению, однако на данный момент их использование не дает экономической выгоды. Увидим ли мы полезное превосходство от квантовых компьютеров в ближайшие несколько лет? По всей видимости, да. По крайней мере мы ближе к этому с каждым месяцем.

Квантовые компьютеры: от идеи до технологического превосходства

Квантовые компьютеры представляют собой класс вычислительных устройств, которые используют для обработки информации явления, характерные для отдельных квантовых систем, таких как атомы, ионы, фотоны и др. Ключевыми для квантовых вычислений являются суперпозиция — возможность квантовых систем быть «одновременно» в нескольких состояниях — и квантовая запутанность, проявляющаяся во взаимосвязи между квантовыми объектами.

Элементарными информационными единицами при работе квантового компьютера являются кубиты — квантовые «аналоги» классических битов информации. Как раз благодаря явлению квантовой суперпозиции кубиты могут быть и логическим нулем, и логической единицей одновременно (в отличие от классических битов, которые могут быть лишь в одном из этих состояний).

Идеи квантовых компьютеров появились в начале 1980-х годов в работах советского математика Юрия Манина, британского математика и физика Дэвида Дойча, а также американского физика Ричарда Фейнмана. Уже в середине 1990-х появились первые квантовые алгоритмы для работы на будущих квантовых компьютерах, которые заинтересовали бизнес. Например, оказалось, что с помощью квантовых компьютеров можно будет взламывать современные криптографические алгоритмы.

В определенных классах математических задач квантовые компьютеры могут продемонстрировать существенное превосходство над классическими технологиями. Примерами задач являются криптоаналитика, моделирование сложных систем, обработка больших данных (big data) и др. Существующие на данный момент квантовые компьютеры обладают десятками и сотнями «шумных» кубитов, что не дает возможность полностью раскрыть потенциал их использования. Однако такие компьютеры уже способны на определенных тестовых математических задачах обгонять суперкомпьютеры. Например, на решение тестовой задачи квантовому компьютеру хватает несколько часов и минут, тогда как на классическом оно заняло бы больше 45 лет. При этом уже сейчас есть возможность решать прикладные задачи небольшого масштаба, например из области химии и машинного обучения.

Ключевую роль для полезного квантового превосходства играет решение двух принципиальных задач. Во-первых, создание квантового процессора с большим количеством кубитов и низким уровнем ошибок. В одном сценарии это станет возможным благодаря прогрессу уже существующих систем, а в другом потребует поиска или разработки новых физических платформ для квантовых вычислений. Во-вторых, необходимо значительно расширить класс квантовых алгоритмов для решения прикладных задач. Прогресс движется по каждому из направлений, поэтому на масштабе четырех-пяти лет можно ожидать первые примеры применения квантовых компьютеров для полезных задач.

В качестве одного из потенциальных направлений для квантового превосходства можно рассматривать машинное обучение. Над применениями квантовых компьютеров для задач искусственного интеллекта работают ведущие научные группы по всему миру. Например, ученые из Российского квантового центра вместе с сингапурской компанией «Геро» разработали квантовый алгоритм машинного обучения для поиска новых типов лекарств, что позволило найти более 2 тыс. новых молекул с лекарственными свойствами.

Квантовая защита vs. квантовое нападение

Угроза современной криптографии возникает из-за возможности реализовать на квантовом компьютере эффективные алгоритмы для факторизации, что несет угрозу для криптографии с открытым ключом, а также ускорения поиска по неупорядоченным базам данных. Масштаб проблемы существенный: более 90% данных, передаваемых в интернете, станут открытыми при появлении квантового компьютера. Криптографические стандарты, например для электронных подписей, необходимо будет пересматривать.

Эпоха квантовых компьютеров предполагает два подхода к защите информации. Во-первых, это квантовое распределение ключей. Оно основано на кодировании информации в одиночные квантовые состояния. Во-вторых, решением является постквантовая криптография — набор криптографических алгоритмов, криптоанализ которых имеет сравнимый уровень сложности для классических и квантовых компьютеров.

Технология квантового распределения ключей уже готова к промышленному использованию, необходимы ускорение темпов адаптации технологий крупными компаниями и строительство городских сетей. Постквантовая криптография также уже готова для внедрения решений по защите широкого спектра приложений (мобильные, веб-приложения, цифровые подписи и т.д.). Прогресс в области квантовых компьютеров является очевидным драйвером для внедрения новых технологий защиты информации. Например, в США уже сейчас принят Акт квантовой кибербезопасности, регламентирующий переход на решения, устойчивые по отношению к атакам с квантовых компьютеров. В России ведется работа по стандартизации квантово-устойчивых алгоритмов. Их масштабное внедрение — это также вопрос ближайших трех-пяти лет.

«Дорожные карты» в квантовое будущее

В России основным драйвером развития квантовых технологий являются «дорожные карты», которые сейчас активно реализуются по направлениям квантовых вычислений и коммуникаций под кураторством «Росатома» и РЖД.

Результатом проектов в рамках «дорожной карты» по квантовым вычислениям в России уже стали два квантовых компьютера с 16 кубитами: один из них построен на ионной платформе, а другой — с использованием атомов. Также разработаны процессоры на сверхпроводниках и фотонах.

Проект по ионному квантовому компьютеру обладает важной особенностью. Благодаря поддержке в рамках проекта ЛИЦ и «дорожной карты» удалось реализовать кудитный квантовый процессор — новый способ построения масштабируемых квантовых компьютеров.

Следующие шаги — увеличение количества кубитов или кудитов, а также точности квантовых операций и демонстрация квантовых алгоритмов. При этом многие российские компании уже проявляют интерес к внедрению квантовых технологий.

Промышленные решения для квантового распределения ключей уже используются для построения магистральных и корпоративных квантовых сетей.

В заключение нужно сказать, что сама идея появления квантовых технологий уже необратимо изменила мир. Масштаб изменений трудно прогнозировать на сегодняшнем, уже значимом, но все еще достаточно раннем уровне развития. Вспоминая ранний этап развития полупроводниковой эры вычислений, можно задаться вопросом: хватит ли миру пяти квантовых компьютеров? Очевидно, что нет, так как уже сейчас их количество исчисляется десятками. Полезное же квантовое превосходство будет стимулировать их переход к индустриальному производству — для этого будет достаточно и одного реального кейса применения квантовых компьютеров с экономическим эффектом.

Фото: Lukas Schulze / Getty Images

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Необычные пейринги к вину: мнения сомелье Необычные пейринги к вину: мнения сомелье

Какие можно попробовать неожиданные и необычные пары к вину?

РБК
Революция в астрономии XX века Революция в астрономии XX века

Виктор Амбарцумян — основоположник теории астрофизики в СССР

Знание – сила
Любимец нации Любимец нации

Заметки по случаю дня рождения Остапа Сулеймана Берта-Мария Бендер-бея

Знание – сила
Тур де Кавказ Тур де Кавказ

На Geely Atlas Pro до Эльбруса и назад

Автопилот
С видом на город С видом на город

Интерьер, оформленный в современной эстетике

Идеи Вашего Дома
Яркий джапанди Яркий джапанди

Скандинавский и восточный минимализм в интерьере квартиры в Казани

Идеи Вашего Дома
Интерстеллар Интерстеллар

Испытываем внедорожные качества нового кроссовера Exeed RX

Автопилот
Промышленным гигантам нужны ферменты Промышленным гигантам нужны ферменты

Ученые создали новую технологию получения ферментов для промышленности

Наука
Дизайнерский бутик Дизайнерский бутик

Владимир Пирожков, наверное, самый известный российский промышленный дизайнер

ТехИнсайдер
Радиоактивность, которая лечит Радиоактивность, которая лечит

Ядерная медицина — одно из наиболее динамично развивающихся направлений науки

Наука
Эффекты стиля мемфис Эффекты стиля мемфис

Выразительное оформление современной квартиры

Идеи Вашего Дома
Куда пропала правобережная мурома Куда пропала правобережная мурома

Находки с правого берега Оки позволили по-новому взглянуть на мурому

Наука
Микробы, боги, первопредки Микробы, боги, первопредки

Наше прошлое действительно может быть связано с суровыми северными богами

ТехИнсайдер
Лесные барабанщики Лесные барабанщики

Лес в середине лета затихает, но только кажется безжизненным

Наука и жизнь
Если мир опрокинется Если мир опрокинется

Окончание фантастического рассказа Елены Ворон

Наука и жизнь
Больше света Больше света

Как управлять люминесценцией?

Наука
Эверест как профессия Эверест как профессия

Высоко над нашими головами скрывается самая труднодоступная страна на планете

Вокруг света
Просто и со вкусом Просто и со вкусом

Удачный микс минимализма и скандинавского стиля в миниатюрной квартире-студии

Идеи Вашего Дома
От лифта на орбиту до встречи с марсианами От лифта на орбиту до встречи с марсианами

Какие инновации и тренды будут определять развитие космической отрасли

РБК
Спасти мир от самого себя Спасти мир от самого себя

Непростая история одного из создателей атомной бомбы

Наука
Гимназия Санкт-Петербургской Академии наук: создание и становление Гимназия Санкт-Петербургской Академии наук: создание и становление

История первой гимназии Санкт-Петербургской Академии наук

Знание – сила
«День сурка» с наночастицами «День сурка» с наночастицами

Почему ученые не могут разработать лекарство от ВИЧ?

Знание – сила
Академик Маркс Штарк: главное — это творчество и любовь Академик Маркс Штарк: главное — это творчество и любовь

Маркс Штарк — о том, чему можно научиться у зимнеспящих организмов

Наука
Наскальные мультфильмы Наскальные мультфильмы

Рисункам из пещеры Шове больше 30 тысяч лет

Вокруг света
Темные миры Темные миры

Таинственные тоннели, подземные водоемы, удивительной красоты сталактиты

Вокруг света
ЛПХ-зависимый агро ЛПХ-зависимый агро

77% сельхозпродукции в Забайкальском крае приходится на хозяйства населения

Агроинвестор
Путь воды Путь воды

Как цифровизация помогает развивать российское ЖКХ

РБК
Ольга Бычкова: «В ближайшие десятилетия должна произойти пересборка всего научного мира» Ольга Бычкова: «В ближайшие десятилетия должна произойти пересборка всего научного мира»

Как технологии меняют человека и природу вокруг него

РБК
Прильнувшие стеблем… Прильнувшие стеблем…

Вьюнки и повои из семейства Вьюнковые — красивые и коварные одновременно

Наука и жизнь
Егор Кривошея: «Время делать стратегические ставки» Егор Кривошея: «Время делать стратегические ставки»

Как со временем трансформируется сфера платежей

РБК
Открыть в приложении