Компьютерное зрение: когда роботы перестали тыкать пальцем в небо?

Представьте, что компьютер способен «смотреть» на мир почти как человек. Еще недавно это звучало как фантастика, а сегодня стало реальностью. Мы сталкиваемся с этим ежедневно: смартфон узнает лицо владельца, поиск в Интернете может по фотографии определить породу щенка, а современные автомобили с камерами видят пешеходов и дорожные знаки. Все это – проявления технологий компьютерного зрения. Компьютерное зрение (CV, от англ. computer vision) – это область искусственного интеллекта, позволяющая машинам анализировать изображения и видео и «понимать» их содержание. Давайте разберемся, зачем нужно компьютерное зрение, какие задачи оно решает в разных сферах и как оно работает под капотом.
Зачем нужно компьютерное зрение?
Наш мир наполнен визуальной информацией. Камеры установлены повсюду – от смартфонов и ноутбуков до уличных видеосистем и спутников. Объем визуальных данных растет лавинообразно, и обрабатывать их вручную становится невозможно.
Компьютерное зрение необходимо, чтобы автоматизировать и ускорить работу с визуальной информацией там, где человеку не хватает времени, возможностей или точности.
Алгоритмы CV способны моментально выделять важные детали на изображениях, замечать тонкие особенности и анализировать миллионы снимков куда быстрее, чем это сделал бы человек. В результате компьютеры со «зрением» помогают людям принимать решения более эффективно – от постановки диагноза по рентгеновскому снимку до управления беспилотным автомобилем.
Компьютерное зрение как научная дисциплина берет свое начало примерно с 1960-х годов. Тогда ученые только начинали экспериментировать с алгоритмами, которые могли бы автоматически интерпретировать изображения. Первыми успехами в этой области были примитивные программы, которые распознавали простые формы, контуры объектов и базовые паттерны. Настоящий прорыв случился после 2010-х годов с распространением глубокого обучения (deep learning) и появления архитектур сверточных нейронных сетей (Convolutional Neural Networks, CNN). Задачи, которые до этого казались почти нерешаемыми (например, точное распознавание десятков и сотен различных объектов на фотографиях), начали решаться с высокой точностью.