Леонид Жуков — об ответственности людей и машин за принятие критических решений

РБКHi-Tech

На ошибках учатся

Леонид Жуков — об ответственности людей и машин за принятие критических решений.

Фото: из личного архива

Мы ежедневно сталкиваемся с искусственным интеллектом, но редко задумываемся, какие нормы этики заложены в его алгоритмы, какие решения машины могут принимать самостоятельно, а для чего нужно слово человека. Глава Лаборатории по искусственному интеллекту «Сбера» Леонид Жуков объяснил, почему люди в ближайшем будущем не смогут полностью довериться ИИ.

Что такое хорошо...

Существует этика разработчиков, то есть тех, кто создает софт, этика применения алгоритмов и этика пользователей. Если говорить про разработчиков, то их задача — предотвратить закладывание в алгоритмы процессов, которые могут навредить человеку. С точки зрения алгоритмов самый главный вопрос в том, чтобы они были справедливы в принятии каких-либо решений и честны с пользователем. Пользователь, в свою очередь, должен использовать ИИ только по прямому назначению.

Почему вопрос этики встает, когда речь заходит про искусственный интеллект, и не так важен, к примеру, в разговоре про обычный софт? ИИ, в отличие от традиционного программного продукта, учится на примерах, которые мы ему даем. Он обобщает поступившую информацию и применяет полученные знания к ситуации, которая раньше не встречалась. В этом заключается сила алгоритмов: если бы мы могли перечислить все возможные встречающиеся ситуации, тогда искусственный интеллект был бы бесполезен. Например, без искусственного интеллекта сложно учить машину ездить, потому что невозможно спрогнозировать каждую ситуацию, которая будет встречаться на дороге. Алгоритмы в этом случае способны принять решение самостоятельно на основе анализа и обобщения примеров в его памяти.

Но ИИ может и ошибиться. В алгоритмах, как в любом медицинском тесте, есть показатели точности и есть ошибки, которые невозможно избежать в силу их предсказательной или обобщающей способности. Есть также ошибки, которые возникают при обучении ИИ, потому что определенные сценарии не встречались в обучающих примерах. Например, в компании N за всю историю не было женщин, занимавших высокие посты. Алгоритм, основываясь на этих данных, никогда не наймет женщин, потому что будет считать, что они не способны достичь высокого положения в компании.

Это этично? Нет. Поэтому с точки зрения разработчиков очень важно минимизировать возможность таких ошибок и научить алгоритм собирать непредвзятые данные. С точки зрения пользователей алгоритмов, как уже говорилось выше, очень важно не применять ИИ в ситуациях, для которых он не предназначен. Например, если алгоритм, натренированный отличать кошек от собак, запустить в зоопарке, он будет либо не способен дать ответ, либо, что еще хуже, пытаться классифицировать всех зверей лишь на кошек или собак.

…и что такое плохо

На сегодняшний день основное средство контроля за этичностью алгоритма — это отсутствие у него возможности принимать критически важные решения самостоятельно. Например, ставить диагнозы. На языке разработчиков это называется human in the loop: человек обязательно участвует в принятии решений, а алгоритм выступает как советчик.

Уровень алгоритмов пока не настолько высок, чтобы мы им доверяли принятие жизненно важных решений, но некоторые вещи мы все же позволяем делать ИИ самостоятельно. Например, повсеместно используемые роботы-пылесосы. Они управляются искусственным интеллектом, но могут ошибиться и заехать не в ту комнату или наехать на препятствие. Однако это не грубая ошибка, и она не приводит к критическим последствиям. То есть пылесос не может сделать ничего такого, что могло бы навредить человеку. Это к вопросу об этике — в алгоритмы работы робота заложены определенные ограничения, которые он не может переступить.

Существующие алгоритмы ИИ можно разделить на два класса: black-box и white-box. Первый — это некий «черный ящик», при использовании которого даже эксперту, создавшему его, может быть непонятно, почему ИИ выдал ту или иную рекомендацию (например, модели глубинного нейронного обучения, deep learning). Такие алгоритмы можно использовать для сервисов с музыкой или фильмами, но нельзя применять ни в медицине, ни в финансах, ни в какой-либо другой ответственной отрасли.

White-box или transparent (прозрачные алгоритмы), наоборот, используют для важных отраслей, так как там алгоритмы максимально просты и понятны. Важным моментом для обеих категорий является ответственность за ошибку. Пока этот вопрос остается нерешенным с юридической точки зрения. Неясно, кто должен нести ответственность за неправильное решение или ошибку ИИ — пользователь, создатель или владелец алгоритма.

Алгоритмы учатся точнее моделировать ситуации и меньше ошибаться, однако они никогда не станут совершенны и безошибочны. Вопрос о допустимом пороге ошибок, цене за ошибку и экономии от замены человека искусственным интеллектом будет стоять всегда. В ближайшем будущем человек по-прежнему будет принимать критические решения, каким бы умным и этичным ни был ИИ.

Леонид Жуков — директор Лаборатории по искусственному интеллекту «Сбера», доктор наук, профессор Высшей школы экономики, пятикратно удостоенный звания «Лучший преподаватель». Является одним из ведущих экспертов в России и в мире в области анализа больших данных, искусственного интеллекта и машинного обучения.

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Правила игры для промышленного майнинга Правила игры для промышленного майнинга

Что думают эксперты о легализации добычи криптовалют

РБК
Медузомицет или комбуча? Медузомицет или комбуча?

Чайный гриб вновь стал популярным. Полезен ли он и чем отличается от комбучи?

Наука и жизнь
Слово редактора Слово редактора

На самом деле, нет более открытых миру людей, чем яхтсмены

Y Magazine
Путешествие в Рождество Путешествие в Рождество

Подмосковный дом, которому позавидовал бы и сам Дед Мороз

AD
Экономика на высоких технологиях Экономика на высоких технологиях

Развитие ИТ-индустрии в Москвоской области стимулируется дополнительно

РБК
Кость даю Кость даю

Семейная коллекция северного косторезного искусства Михаила Карисалова

Forbes
Как вспышка на солнце «объяснила» происхождение заброшенной крепости Как вспышка на солнце «объяснила» происхождение заброшенной крепости

Дендрохронология помогла установить дату строительства древней крепости

Наука и жизнь
Пляшем от печки Пляшем от печки

Мансарда в районе Старого Арбата с дизайнерской голландкой посередине

AD
Калязин. Фрески затопленного монастыря Калязин. Фрески затопленного монастыря

История единственной коллекции фресковой живописи Троице-Макарьева монастыря

Наука и жизнь
Поимка «тихого убийцы» Поимка «тихого убийцы»

Нобелевская премия 2020 года присуждена за открытие вируса гепатита C

Наука и жизнь
Ананасы в шампанском — это пульс вечеров! Ананасы в шампанском — это пульс вечеров!

О литературном и гастрономическом вкусе Серебряного века

Наука и жизнь
Любимые рецепты Лали Чочия. Маффины из тыквы Любимые рецепты Лали Чочия. Маффины из тыквы

Лали Чочия делится рецептом сытных и полезных тыквенных маффинов

Seasons of life
Больной человек Европы Больной человек Европы

История прокладки Багдадской железной дороги, приблизившей Первую мировую войну

Forbes
Дом для современного человека Дом для современного человека

Вернулся к жизни дом Наркомфина — главный шедевр эпохи конструктивизма в Москве

AD
Премьерный показ Премьерный показ

Новая квартира танцоров Мариинского театра Владимира и Марии Шкляровых

AD
Пациенты новой ориентации Пациенты новой ориентации

Объемы предоставления платных медуслуг в России снижаются

РБК
Какая-то трава вместо чая Какая-то трава вместо чая

Каркаде и ройбуш — конкуренты традиционного чая

Наука и жизнь
«Здоровое питание человека начинается со здорового питания животных» «Здоровое питание человека начинается со здорового питания животных»

Иоганн-Каспар Гаммелин — о новых технологиях, которые повышают экологичность

РБК
Остров тишины Остров тишины

Брутальная пятидесятишестиметровая квартира по проекту Марии Петровой

AD
Семь фильмов, которые помогут в поисках себя Семь фильмов, которые помогут в поисках себя

Как решиться сделать шаг в новом направлении или найти силы вернуться к себе?

Seasons of life
Путешествие на выходные: Русский Версаль Путешествие на выходные: Русский Версаль

Путешествие в прошлое

Seasons of life
Речной дворец Речной дворец

Северный речной вокзал открылся после масштабной реставрации

AD
Медная река Медная река

Как работает брутальный бизнес Игоря Алтушкина

Forbes
Высыпаемся: правила сна для мам Высыпаемся: правила сна для мам

Ничего лучше для восстановления сил, чем сон, пока не придумали!

Seasons of life
«Положительные эмоции клиента — самое ценное в премиальном сегменте» «Положительные эмоции клиента — самое ценное в премиальном сегменте»

Какие банковские продукты и решения предпочитают премиальные клиенты банков?

РБК
Дары на вечное хранение Дары на вечное хранение

Юбилейная выставка в Русском музее: поклон в пояс дарителям!

Наука и жизнь
Стенка на стенку: пограничных барьеров Стенка на стенку: пограничных барьеров

При всем многообразии выбора забор остается лучшим способом самоизоляции

Вокруг света
Светлана Чупшева: «Создателем трендов может быть любой человек» Светлана Чупшева: «Создателем трендов может быть любой человек»

Светлана Чупшева возглавляет Агентство стратегических инициатив с 2017 года

РБК
Электрический аммиак Электрический аммиак

Растворённые в воде нитраты можно превращать в полезный аммиак

Наука и жизнь
Вокруг да около Лувра Вокруг да около Лувра

Все, что вы хотели бы узнать о самом знаменитом музее мира, под одним переплетом

Forbes
Открыть в приложении