Каким цифровым «зельем» можно отравить нейросеть и к чему это приведет

РБКHi-Tech

Ложь, шум и капелька яда

Каким цифровым «зельем» можно отравить нейросеть и к чему это приведет

Автор: София Труцуненко, методический лид направления Data Science школы IT-профессий Skillfactory

Фото: Михаил Гребенщиков / РБК

Любой, кто работал с большими моделями ИИ (ChatGPT, Midjourney), знает, что сгенерированные тексты и изображения часто требуют коррекции или дополнительных уточнений. Нейросеть может придумывать цифры, создавать фальшивые объекты или признаки, которых на самом деле не было в исходных данных. Это довольно частое явление для больших генеративных моделей, которое еще называют галлюцинациями. Но за неправильными результатами могут скрываться не только ошибки модели, но и злонамеренные действия — отравление данных.

Что такое отравление данных

Отравление данных (data poisoning) — это атака на машинное обучение, во время которой злоумышленник вводит вредоносные данные в обучающий набор для нарушения работы алгоритма обучения и снижения его эффективности.

Чтобы понять, как работает отравление данных, нужно разобраться, как в общем работают алгоритмы машинного обучения. Изначально собирается большой набор данных, и от того, какие именно данные взяли, зависит результат. Следующий шаг — привести данные к одному формату, а для некоторых задач дополнительно снабдить их подсказками для алгоритма (разметкой). Далее алгоритм находит в них признаки и закономерности.

И когда обученный алгоритм сталкивается с данными, которые он еще не видел, он может решить эту задачу, опираясь на те правила, которые он для себя создал ранее. Отравление данных нарушает этот процесс, подмешивая в обучающий набор вредоносные сведения, которые искажают или запутывают обученный алгоритм.

Рассмотрим некоторые примеры таких атак.

  • Внесение шума (Noise Injection): добавление случайных или искаженных данных в обучающий набор.
  • Удаление данных (Data Removal): исключение части данных из обучающего набора.
  • Вставка ложных объектов (Object Insertion): добавление несуществующих или ложных объектов в обучающий набор. Сюда же входят скрытые надписи, вотермарки, изображения.
  • Изменение меток классов (Label Flipping): изменение или искажение разметки классов в обучающем наборе. То есть данные не добавляются, но происходит подмена: например, картинки с кошками подписываются как картинки с собаками, и наоборот.

Но гораздо интереснее те методы, которые нельзя заметить, ведь современные отравленные данные могут выглядеть нормально для человеческого глаза, но при этом они тоже будут ломать алгоритм.

Одним из самых громких примеров отравления данных является программа Nightshade, созданная исследователями Чикагского университета. Это ответ на достаточно больную этическую тему для больших генеративных ИИ-моделей — проблему авторского права.

Чтобы обучить качественную модель на уровне DALL-E и Midjourney, нужно не просто много данных, нужно очень много данных. И многие большие модели не обладают правами на работы, которые использовались в обучении. А результат работы — сгенерированная картинка, которая не имеет признаков интеллектуальной собственности. Nightshade незаметно вставляет признаки одного объекта на картинки с другим. Там, где человеческий глаз увидит собаку, нейронная сеть может воспринимать признаки и контуры другого объекта, например кота. Это позволяет создавать искажения в изображениях, которые остаются незамеченными человеком, но влияют на работу модели искусственного интеллекта, обученной на этих данных. Изображения меняются таким образом, что видимая разница минимальна.

Зоны риска

Отравление данных — это очень серьезный метод воздействия на системы искусственного интеллекта, он может привести к различным по степени негативным последствиям в зависимости от контекста и особенностей атаки. На эффективность отравления данных влияют степень его скрытности и сложность обнаружения изменений.

Цели атаки и контекст также влияют на последствия — от обмана локальных систем безопасности до воздействия на масштабные финансовые или медицинские системы.

Сейчас отравление данных существует и на уровне прикладных инструментов для незащищенных некрупных систем, и как глобальная угроза безопасности, которая изучается ведущими учеными и отраслевыми специалистами.

Искусственный интеллект внедряется во все чувствительные сферы нашей жизни: финансы, медицину, пропускные системы и даже поиск преступников. Последствия отравления данных могут быть катастрофическими. Вот несколько примеров.

Распознавание лиц: злоумышленник может добавить в обучающий набор чужие изображения лиц, взятые из открытых источников. Это может привести к тому, что невиновного человека задержат правоохранительные органы.

Медицинские данные: подмена истории болезни пациента или результатов анализов в медицинских приложениях. Такая атака может привести к ложному диагнозу.

Финансовые данные: из-за добавления фальшивых транзакций или ухищрений в финансовые данные человеку могут предъявить необоснованные обвинения в финансовых махинациях. А атака большего масштаба может спровоцировать дестабилизацию рынка.

Дорожная ситуация (беспилотные автомобили): злоумышленник может добавить деформированные дорожные знаки или маркировку на дорогах в систему распознавания. Это может привести к авариям и несчастным случаям.

Способы защиты

Чтобы минимизировать риски отравления данных, необходим системный подход к кибербезопасности. С одной стороны, он должен включать традиционные методы: мониторинг сетей и использование брандмауэров, антивирусов и обновление программного обеспечения. Кроме того, для обнаружения вредоносных воздействий алгоритмами машинного обучения могут решаться такие задачи, как мониторинг аномалий, фильтрация и валидация данных после обучения.

Специалисту, работающему с большими моделями и сложными признаками, важно регулярно мониторить и изучать данные, которые он использовал для обучения моделей искусственного интеллекта. Это позволит своевременно выявлять подозрительные или аномальные паттерны, которые могут свидетельствовать о внедрении отравленных данных.

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Какие условия нужны для комплексного развития территорий Какие условия нужны для комплексного развития территорий

Как региональные власти могут улучшить ситуацию в экономике?

РБК
Ольга Сварник: «Мозгу постоянно нужна новизна» Ольга Сварник: «Мозгу постоянно нужна новизна»

О мире, где человек вынужден конкурировать с нейросетями

РБК
Слово редактора Слово редактора

На самом деле, нет более открытых миру людей, чем яхтсмены

Y Magazine
Гонки вокруг света Гонки вокруг света

Путешествие «леди Сенсация» привлекло внимание прессы и читателей по всему миру

Вокруг света
Выиграть жену Выиграть жену

Интеллектуальные игры сопровождали калмыков с детства

Вокруг света
Тёмное зазеркалье Тёмное зазеркалье

Рядом с нами может существовать параллельный зеркальный мир, названный теневым

Наука и жизнь
ТВС-2ДТС. Композитный кукурузник, который не смог ТВС-2ДТС. Композитный кукурузник, который не смог

О несостоявшейся рабочей лошадке малой авиации в России – ТВС-2ДТС

Наука и техника
Спаржевый стартап Спаржевый стартап

Олег Жолобенко выращивает деликатесную агрокультуру в Черноземье

Агроинвестор
Посол Советского Союза Посол Советского Союза

В истории были женщины, которые волею судьбы играли роль посла

Знание – сила
Бей, молись, беги Бей, молись, беги

Игры с мячом и битой – древнейшие развлечения человечества

Вокруг света
Код активного Солнца Код активного Солнца

Сможет ли искусственный интеллект предупреждать нас о природных катастрофах

РБК
Вертолет, который смог Вертолет, который смог

Как Ingenuity собирает данные на Марсе

ТехИнсайдер
«Мониторинг цифровой трансформации бизнеса» «Мониторинг цифровой трансформации бизнеса»

Направления и тенденции цифровизации деловой среды

РБК
Вселенная Майнкрафта Вселенная Майнкрафта

В кубическом мире строят, копают и выживают более 130 миллионов игроков

Вокруг света
Теория игр Теория игр

Прав ли сказавший, что наша жизнь – игра?

Вокруг света
Краса всей зелени известной Краса всей зелени известной

Спаржа лекарственная ведёт своё происхождение с берегов Средиземного моря

Наука и жизнь
Попали в историю Попали в историю

Какие цифровые данные оставляют пользователи в Сети и для чего их собирают

РБК
Екатерина Великая в Москве Екатерина Великая в Москве

Екатерина Великая не любила Москву, но так ли всё однозначно?

Знание – сила
Чистая работа Чистая работа

Как избавляться от цифрового мусора и кому можно поручить эту работу?

РБК
Загадка «ангарского цветка» Загадка «ангарского цветка»

Ученые находят растения, которые относят к цветковым, в слоях юрского периода

Наука и техника
«Все, что было его, – нынче ваше» «Все, что было его, – нынче ваше»

Место творчества Булата Окуджавы в современной литературе и литературоведении

Знание – сила
Жизнь без еды Жизнь без еды

Среди насекомых есть виды, которые во взрослом состоянии не питаются вовсе

Наука и жизнь
Незабытое поколение Незабытое поколение

В чем смысл и выгода в поддержке старого софта и устройств

РБК
От моря до облака От моря до облака

Как работают подводные кабели и чем грозит их повреждение

РБК
Олимпийские инновации 24-26-28 Олимпийские инновации 24-26-28

Какие новые виды спорта мы увидим на Играх в 2024–2028 годах, чем они интересны?

ТехИнсайдер
Полет Гагарина Полет Гагарина

Как на самом деле проходил первый полет Гагарина в космос?

Знание – сила
История одной звездной системы История одной звездной системы

В 366 световых годах от нас находится гигантская звезда Дзета Змееносца

Наука и техника
Разум в наследство Разум в наследство

Откуда взялась наша центральная нервная система – головной и спинной мозг?

Вокруг света
Самый энергичный свет Самый энергичный свет

История открытия и некоторые факты о гамма-лучах

Наука и жизнь
Построил Джек Построил Джек

Гибрид начинает и выигрывает

Автопилот
Открыть в приложении