Каким цифровым «зельем» можно отравить нейросеть и к чему это приведет

РБКHi-Tech

Ложь, шум и капелька яда

Каким цифровым «зельем» можно отравить нейросеть и к чему это приведет

Автор: София Труцуненко, методический лид направления Data Science школы IT-профессий Skillfactory

Фото: Михаил Гребенщиков / РБК

Любой, кто работал с большими моделями ИИ (ChatGPT, Midjourney), знает, что сгенерированные тексты и изображения часто требуют коррекции или дополнительных уточнений. Нейросеть может придумывать цифры, создавать фальшивые объекты или признаки, которых на самом деле не было в исходных данных. Это довольно частое явление для больших генеративных моделей, которое еще называют галлюцинациями. Но за неправильными результатами могут скрываться не только ошибки модели, но и злонамеренные действия — отравление данных.

Что такое отравление данных

Отравление данных (data poisoning) — это атака на машинное обучение, во время которой злоумышленник вводит вредоносные данные в обучающий набор для нарушения работы алгоритма обучения и снижения его эффективности.

Чтобы понять, как работает отравление данных, нужно разобраться, как в общем работают алгоритмы машинного обучения. Изначально собирается большой набор данных, и от того, какие именно данные взяли, зависит результат. Следующий шаг — привести данные к одному формату, а для некоторых задач дополнительно снабдить их подсказками для алгоритма (разметкой). Далее алгоритм находит в них признаки и закономерности.

И когда обученный алгоритм сталкивается с данными, которые он еще не видел, он может решить эту задачу, опираясь на те правила, которые он для себя создал ранее. Отравление данных нарушает этот процесс, подмешивая в обучающий набор вредоносные сведения, которые искажают или запутывают обученный алгоритм.

Рассмотрим некоторые примеры таких атак.

  • Внесение шума (Noise Injection): добавление случайных или искаженных данных в обучающий набор.
  • Удаление данных (Data Removal): исключение части данных из обучающего набора.
  • Вставка ложных объектов (Object Insertion): добавление несуществующих или ложных объектов в обучающий набор. Сюда же входят скрытые надписи, вотермарки, изображения.
  • Изменение меток классов (Label Flipping): изменение или искажение разметки классов в обучающем наборе. То есть данные не добавляются, но происходит подмена: например, картинки с кошками подписываются как картинки с собаками, и наоборот.

Но гораздо интереснее те методы, которые нельзя заметить, ведь современные отравленные данные могут выглядеть нормально для человеческого глаза, но при этом они тоже будут ломать алгоритм.

Одним из самых громких примеров отравления данных является программа Nightshade, созданная исследователями Чикагского университета. Это ответ на достаточно больную этическую тему для больших генеративных ИИ-моделей — проблему авторского права.

Чтобы обучить качественную модель на уровне DALL-E и Midjourney, нужно не просто много данных, нужно очень много данных. И многие большие модели не обладают правами на работы, которые использовались в обучении. А результат работы — сгенерированная картинка, которая не имеет признаков интеллектуальной собственности. Nightshade незаметно вставляет признаки одного объекта на картинки с другим. Там, где человеческий глаз увидит собаку, нейронная сеть может воспринимать признаки и контуры другого объекта, например кота. Это позволяет создавать искажения в изображениях, которые остаются незамеченными человеком, но влияют на работу модели искусственного интеллекта, обученной на этих данных. Изображения меняются таким образом, что видимая разница минимальна.

Зоны риска

Отравление данных — это очень серьезный метод воздействия на системы искусственного интеллекта, он может привести к различным по степени негативным последствиям в зависимости от контекста и особенностей атаки. На эффективность отравления данных влияют степень его скрытности и сложность обнаружения изменений.

Цели атаки и контекст также влияют на последствия — от обмана локальных систем безопасности до воздействия на масштабные финансовые или медицинские системы.

Сейчас отравление данных существует и на уровне прикладных инструментов для незащищенных некрупных систем, и как глобальная угроза безопасности, которая изучается ведущими учеными и отраслевыми специалистами.

Искусственный интеллект внедряется во все чувствительные сферы нашей жизни: финансы, медицину, пропускные системы и даже поиск преступников. Последствия отравления данных могут быть катастрофическими. Вот несколько примеров.

Распознавание лиц: злоумышленник может добавить в обучающий набор чужие изображения лиц, взятые из открытых источников. Это может привести к тому, что невиновного человека задержат правоохранительные органы.

Медицинские данные: подмена истории болезни пациента или результатов анализов в медицинских приложениях. Такая атака может привести к ложному диагнозу.

Финансовые данные: из-за добавления фальшивых транзакций или ухищрений в финансовые данные человеку могут предъявить необоснованные обвинения в финансовых махинациях. А атака большего масштаба может спровоцировать дестабилизацию рынка.

Дорожная ситуация (беспилотные автомобили): злоумышленник может добавить деформированные дорожные знаки или маркировку на дорогах в систему распознавания. Это может привести к авариям и несчастным случаям.

Способы защиты

Чтобы минимизировать риски отравления данных, необходим системный подход к кибербезопасности. С одной стороны, он должен включать традиционные методы: мониторинг сетей и использование брандмауэров, антивирусов и обновление программного обеспечения. Кроме того, для обнаружения вредоносных воздействий алгоритмами машинного обучения могут решаться такие задачи, как мониторинг аномалий, фильтрация и валидация данных после обучения.

Специалисту, работающему с большими моделями и сложными признаками, важно регулярно мониторить и изучать данные, которые он использовал для обучения моделей искусственного интеллекта. Это позволит своевременно выявлять подозрительные или аномальные паттерны, которые могут свидетельствовать о внедрении отравленных данных.

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Новые лидеры: как меняются требования к управленцам Новые лидеры: как меняются требования к управленцам

Как готовят лидеров для динамичной деловой среды?

РБК
Новые пассажиры «Титаника» Новые пассажиры «Титаника»

Когда в 90-х годах упало финансирование науки, институты РАН выживали, как могли

Наука и техника
Она вышивает мечты Она вышивает мечты

Самая яркая звезда на небосклоне высокой моды Поднебесной — талантливая Гуо Пей

Y Magazine
Бессмертие «цзы» Бессмертие «цзы»

Иероглифы в Поднебесной всегда воспринимались как нечто священное

Знание – сила
Детский мир Детский мир

Питер Брейгель превратил в детскую площадку целый город

Вокруг света
Шекспир в окружении Шекспиров Шекспир в окружении Шекспиров

Кто был автором пьес, что традиционно приписываются актеру Уильяму Шекспиру?

Знание – сила
Новые археологические открытия и альтернативные пути развития человечества Новые археологические открытия и альтернативные пути развития человечества

Ряд археологических открытий, не вписывающихся в привычную со школы картину

Наука и техника
Летящие над водой Летящие над водой

Всемирный конкурс лучших решений в области судов на подводных крыльях

ТехИнсайдер
Третья форма денег Третья форма денег

Что такое цифровые валюты центробанков и каково их место в России и мире

РБК
Евгеника: хотели как лучше... Евгеника: хотели как лучше...

Как евгеника стала синтезом теории вырождения, теории Дарвина и научного расизма

Знание – сила
Ледовая жизнь Арктики Ледовая жизнь Арктики

Мало кто знает, какая разнообразная жизнь скрывается во льдах Арктики

Наука и жизнь
Фундамент для PropTech Фундамент для PropTech

Как боты, ИИ и другие технологии меняют рынок недвижимости

РБК
Гонки вокруг света Гонки вокруг света

Путешествие «леди Сенсация» привлекло внимание прессы и читателей по всему миру

Вокруг света
«Рынки вернулись к привычному росту» «Рынки вернулись к привычному росту»

Как экономика Рунета адаптировалась к высоким рискам

РБК
Вертолет, который смог Вертолет, который смог

Как Ingenuity собирает данные на Марсе

ТехИнсайдер
Бескишечные морские черви, нефть, газ и жизнь на других планетах Бескишечные морские черви, нефть, газ и жизнь на других планетах

О положении вестиментифер и погонофор в системе животного царства

Наука и жизнь
Агрессоры в саду Агрессоры в саду

В статье речь пойдёт не о диких сорняках, а об обитателях сада, посаженных нами

Наука и жизнь
Кубок «Америки»: мифы, времена и люди Кубок «Америки»: мифы, времена и люди

Как и благодаря кому Кубок «Америки» обрел свой уникальный статус?

Y Magazine
Чистая работа Чистая работа

Как избавляться от цифрового мусора и кому можно поручить эту работу?

РБК
Ольга Сварник: «Мозгу постоянно нужна новизна» Ольга Сварник: «Мозгу постоянно нужна новизна»

О мире, где человек вынужден конкурировать с нейросетями

РБК
Море без границ Море без границ

Bering Yachts разработала проект моторной суперъяхты Bering B165

Y Magazine
Александр Пиперски: «Нейросети взломали систему человеческой коммуникации» Александр Пиперски: «Нейросети взломали систему человеческой коммуникации»

Как мы будем обмениваться информацией в век новых технологий

РБК
Старость не радость? Старость не радость?

Человечество стареет. Тенденция отмечается практически во всех странах мира

Наука и техника
Додекаэдры Древнего Рима Додекаэдры Древнего Рима

Археологов давно волнуют странные предметы, попадающиеся при раскопках в Риме

Наука и жизнь
Наука в фантастике: эпизоды истории Наука в фантастике: эпизоды истории

Утопия Богданова не стала образцом для общества, но его романы перечитывали

Наука и жизнь
Первая пятилетка Первая пятилетка

Нереальные цифры, которые показались советским руководителям неамбициозными

Наука
Бескишечные морские черви, нефть, газ и жизнь на других планетах Бескишечные морские черви, нефть, газ и жизнь на других планетах

За чей счет существуют классические погонофоры?

Наука и жизнь
«Lingua latina» «Lingua latina»

Непростая судьба и трансформации латинского языка

Знание – сила
Зелёная команда Зелёная команда

Как растительные сообщества конкурируют между собой

Наука и жизнь
Памяти советского Гайд-парка Памяти советского Гайд-парка

История преследуемого и одновременно удобного для власти театра на Таганке

Наука
Открыть в приложении