Как развиваются технологии хранения энергии

РБКHi-Tech

Резерв на будущее

Как развиваются технологии хранения энергии

Автор: Анастасия Михалева

Фото: VCG / VCG via Getty Images

Только произвести энергию недостаточно, ее запасы еще нужно где-то хранить. Ученые стремятся создать все более совершенные аккумуляторы и за последние годы придумали немало интересных разработок. «РБК Тренды» ознакомились с некоторыми из них.

Рынок сохранения энергии активно растет и продолжит развиваться в ближайшие годы. Это подтверждают данные экономического агентства BloombergNEF (BNEF): мировой рынок накопления энергии вырос почти втрое в 2023 году, а к 2030 году будет расти ежегодными темпами в 21%.

Без эффективных решений для хранения энергии невозможно представить развитие технологий, на которые сегодня возлагаются большие надежды, — от электромобилей до систем искусственного интеллекта и космических исследований.

Последние 30 лет весь мир пользуется литий-ионными аккумуляторами. И хотя они по-прежнему остаются лидерами рынка, у этой технологии достаточно минусов, которые вынуждают ученых искать альтернативу: высокая пожароопасность, чувствительность к температурам, довольно высокая скорость саморазряда (потеря 3–5% заряда в месяц).

Главная задача ученых сейчас — создавать аккумуляторы, которые смогут хранить больше энергии, работать дольше, будут более дешевыми в производстве и, как следствие, более доступными. Еще один важный запрос общества, с оглядкой на который ведутся все научные разработки, — это запрос на зеленую и возобновляемую энергию.

Фото: SweetBunFactory / Shutterstock / FOTODOM

Громкие эксперименты в отрасли

Альтернативные батареи и никакого лития

Последние годы отмечены резким ростом интереса к альтернативным типам батарей на рынке хранения энергии, что делает их перспективными кандидатами на роль ключевых решений для устойчивой энергетики. Среди наиболее обсуждаемых технологий — натриево-ионные (Sodiumion), калий-натриевые (K-Na/S) и твердотельные батареи, каждая из которых обещает преодолеть проблемы традиционных литий-ионных систем по производительности и экологичности.

Натриево-ионные батареи — одна из наиболее перспективных альтернатив литий-ионным аккумуляторам. Благодаря замене дорогостоящего лития на более доступный и дешевый натрий эти батареи могут значительно сократить производственные затраты, сохраняя высокую эффективность.

Фото: Northvolt

В последние годы исследования существенно продвинулись в вопросах повышения долговечности и стабильности таких батарей. Важным достижением стало использование новых материалов для анода и катода.

Анод и катод — это два электрода, между которыми происходит обмен ионами натрия во время зарядки и разрядки. Анодные материалы накапливают заряженные частицы (ионы натрия) во время зарядки, а катодные материалы высвобождают их, обеспечивая движение тока.

Разработка новых анодных и катодных материалов позволяет повысить плотность энергии, то есть количество энергии, которое батарея может удерживать при своем весе или объеме, а также продлить срок службы натриево-ионных батарей, делая их более привлекательными для массового применения.

Даже компании, ранее производившие преимущественно литий-ионные батареи, начинают осваивать технологию натриево-ионных аккумуляторов. Одна из таких компаний — Northvolt. Первое поколение натриево-ионных элементов Northvolt предназначено в первую очередь для хранения энергии, а последующие поколения, обеспечивающие более высокую плотность энергии, открывают возможности для создания экономически эффективных решений в области электромобилей.

Калий-натриевые батареи (K-Na/S) — еще одна инновационная концепция, сочетающая в себе преимущества натрия и калия. Калий, имея более высокую подвижность по сравнению с ионами лития, способствует более быстрой и эффективной передаче заряда, что позволяет повысить плотность энергии. Это делает такие батареи мощным и экономически выгодным решением.

K-Na/S-системы могут не только конкурировать с традиционными литий-ионными батареями, но и превосходить их по ряду показателей. Например, калий-натриевые батареи обладают более высокой температурной стабильностью и долговечностью. Кроме того, благодаря широкой доступности и низкой стоимости калия и натрия они потенциально более устойчивы с точки зрения экологичности. Нужно принять в расчет и то, что запасы лития ограничены. K-Na/S-системы могут значительно снизить зависимость от редких и дорогостоящих материалов, что делает их перспективным решением для устойчивой энергетики.

Например, активной разработкой калий-натриевых батарей занимаются инженеры Колумбийского университета (США). В 2024 году они опубликовали статью о своей разработке — новом электролите.

Обычно калий-натриевые батареи требуют высоких температур для работы, что делает их дорогими и сложными в эксплуатации. Однако новый электролит позволяет таким батареям работать при температуре около 75 °C — это намного ниже, чем в предыдущих разработках. Кроме того, электролит помогает растворять твердые соединения, которые обычно образуются при разряде батареи и снижают ее эффективность. Благодаря этому батареи с новым электролитом могут достигать почти максимальной теоретической емкости и иметь более долгий срок службы.

Исследование ученых Колумбийского университета может стать шагом вперед в создании доступных и эффективных альтернатив литий-ионным батареям.

Твердотельные батареи также считаются одной из самых перспективных разработок в области энергосистем. Их ключевым отличием является замена жидкого электролита твердым, что значительно повышает безопасность и плотность энергии. Такие разработки ведутся в Центре исследований и инноваций в области аккумуляторов австралийского Университета Дикина — там проводят эксперименты с твердотельными батареями, которые обещают повысить безопасность и эффективность аккумуляторов для электромобилей.

Фото: luchschen / Shutterstock / FOTODOM

Текущие испытания направлены на оптимизацию производственного процесса и оценку жизнеспособности таких батарей для массового производства. Одни из последних опытных образцов лаборатории напоминают тонкие гибкие пакеты серебристого цвета. Они не имеют жесткого корпуса и выглядят как небольшие аккуратные пакеты с металлическими контактами на одном конце. Такой внешний вид снижает вес батарей и делает их перспективными для использования в различных компактных устройствах.

Кроме того, твердотельные батареи могут быть адаптированы для работы с различными химическими составами, включая Na-Ion и K-Na/S, что открывает возможности для создания еще более совершенных типов аккумуляторов.

Биобатареи и энергичная работа бактерий

Биобатареи — это инновационное направление в энергетике, где для производства электричества используются микроорганизмы и биологические материалы, такие как микробы или растительные экстракты. Эти батареи функционируют на основе микробных топливных элементов, в которых бактерии перерабатывают углеродсодержащие соединения, выделяя электроны, которые затем могут быть использованы для создания электрического тока.

Принцип работы биобатарей связан с метаболизмом бактерий. Когда микроорганизмы расщепляют органические вещества, образуются электроны и протоны. Протоны перемещаются через специальный солевой мост от анода к катоду, электроны проходят через внешнюю цепь, генерируя электричество. Этот процесс позволяет биобатареям использовать отходы, такие как пищевая или сельскохозяйственная биомасса, для выработки энергии, одновременно способствуя утилизации этих отходов.

Биобатареи обладают экологическими преимуществами: они не содержат токсичных компонентов, легко утилизируются и биоразлагаемы. Например, прототип биобатареи, созданный исследователями из Бингемтонского университета (США), представляет собой устройство размером 30×30×3,2 мм, способное работать несколько недель. Это устройство может быть легко интегрировано в различные системы, где нужны автономные и безопасные источники питания, и подходит для одноразового использования в таких областях, как мониторинг окружающей среды.

Эти батареи можно комбинировать для получения большей мощности. Например, 24 биобатареи, соединенные последовательно и параллельно, успешно запитали Bluetooth-термометр, передающий данные на расстояние до 10 м. Хотя биобатареи уступают литиевым по мощности, они имеют значительное преимущество в безопасности для экосистемы: после использования такие устройства можно обработать этанолом для разложения большинства материалов, что делает их особенно полезными для одноразовых устройств и экологически чистых применений.

Тепловые аккумуляторы

В 2024 году Массачусетский технологический институт (MIT) включил тепловые аккумуляторы в список прорывных технологий, которые могут существенно повлиять на будущее.

Хотя технология тепловых аккумуляторов существует уже давно, сейчас она приобрела особую актуальность в связи с трендом на декарбонизацию промышленности — сокращение выбросов углекислого газа и других парниковых газов для снижения климатического воздействия. Для этого индустриальный сектор переходит на возобновляемые источники энергии, модернизирует оборудование для повышения энергоэффективности и использует альтернативные технологии хранения энергии, в том числе тепловые аккумуляторы.

Фото: Getty Images

Тепловой аккумулятор работает по следующей схеме. Электричество, генерируемое от возобновляемых источников такими устройствами, как солнечные панели и ветровые турбины, поступает в систему и используется для нагрева специальных накопительных материалов — особых кирпичей. Тысячи тонн такого кирпича нагреваются непосредственно за счет этого теплового излучения и сохраняют энергию в течение нескольких часов или дней с очень низкими потерями (менее 1% в день). Когда тепло требуется потребителю, оно передается через теплообменники, преобразуется в пар или подается в виде тепла, что позволяет использовать энергию по запросу.

Хотя тепловые аккумуляторы и не совсем то, о чем обычно думают, когда речь заходит о батареях, эта технология заслуживает внимания в контексте хранения энергии. Она позволяет эффективно аккумулировать избыточную энергию, полученную от возобновляемых источников, и использовать ее по запросу, что особенно важно для промышленности в условиях декарбонизации. Тепловые аккумуляторы — это перспективное направление, которое может сыграть значительную роль в переходе на экологичные и устойчивые технологии хранения энергии.

Фото: David Silverman / Getty Images

Перспективы рынка аккумуляторов

Рост интереса к технологиям хранения энергии создает благоприятные условия для динамичного развития рынка аккумуляторов. По данным исследовательского агентства Statista, объем рынка вырастет более чем в четыре раза между 2021 и 2030 годами — с $112 млрд до почти $424 млрд.

Основной вклад в этот рост будет вносить сегмент литий-ионных аккумуляторов, так как они остаются доминирующими в таких сферах, как электромобили, электроника и промышленные системы хранения энергии. Тем не менее интерес к альтернативным технологиям также увеличивается, особенно в контексте применения для крупномасштабного хранения энергии от возобновляемых источников.

Так что в ближайшие годы ученым и исследователям будет чем заняться в этой сфере: инновации и усиление спроса на экологически чистые и энергоэффективные решения создают устойчивые перспективы для развития рынка хранения энергии. Это, в свою очередь, способствует переходу к низкоуглеродной экономике и расширению применения возобновляемых источников.

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Как ESG-принципы изменили российский рынок недвижимости Как ESG-принципы изменили российский рынок недвижимости

Зеленый подход к девелопменту: польза и подводные камни

РБК
Государь всея Руси Государь всея Руси

Когда Иван III пришел к власти, он стал правителем карликового государства...

Знание – сила
Огненная саламандра Огненная саламандра

Мифический «дух огня» с точки зрения биологии

Вокруг света
Софт для жизни Софт для жизни

Небольшая евродвушка в монолитной новостройке подмосковного Красногорска

Идеи Вашего Дома
Мир после мира Мир после мира

Какой мир принесло завершение англо-бурской войны на юг Африки?

Знание – сила
Популярно о почвах Популярно о почвах

Почему нельзя судить о почве по её верхнему слою?

Наука и техника
Загадка темной материи по-прежнему не раскрыта Загадка темной материи по-прежнему не раскрыта

Темная материя: проблема «последнего парсека», новые факты и рекорды в поисках

Знание – сила
По законам гостеприимства По законам гостеприимства

Солнечный интерьер, который встречает тепло и радостно

Идеи Вашего Дома
Ольга Бычкова: «Российская наука застряла между глобальным Югом и Севером» Ольга Бычкова: «Российская наука застряла между глобальным Югом и Севером»

С какими вызовами столкнулась российская наука и как они влияют на работу ученых

РБК
Маленькая выставка большого художника Маленькая выставка большого художника

Почему маленькая выставка и действительно ли большого художника?

Наука и жизнь
Южнорусский лингвистический остров на карте Уругвая Южнорусский лингвистический остров на карте Уругвая

Как переселенцы из России сохраняют язык в Латинской Америке

Наука
Скорость без звука Скорость без звука

Как устроены электрические байки Ducati V21L

ТехИнсайдер
Большая история маленького самолета. Часть 1 Большая история маленького самолета. Часть 1

Через призму суперджета смотрим на российский авиапром в новейшем времени

Наука и техника
Откуда что пошло на флоте. Рождение парового судна Откуда что пошло на флоте. Рождение парового судна

Как и с чего начиналась «пароходная лихорадка»?

Наука и техника
Грозные «молодцы» мчались по рельсам Грозные «молодцы» мчались по рельсам

Рассвет и закат боевого железнодорожного ракетного комплекса (БЖРК)

Наука и техника
Вокруг света по кусочкам: Восточная Европа Вокруг света по кусочкам: Восточная Европа

Удивительные встречи. Одно из таких знакомств — с путешественником Юрием Лыхиным

Seasons of life
Шаг за шагом до Европы Шаг за шагом до Европы

Как на спутнике Юпитера Европе будут искать внеземные организмы

ТехИнсайдер
«Дом-комод» – новое начало «Дом-комод» – новое начало

К 165-летию со дня рождения А. П. Чехова

Знание – сила
Люди острова Люди острова

Люди Ольхона: что тянет сюда людей, заставляет их остаться?

Seasons of life
Многоликий минерал кварц Многоликий минерал кварц

Кварц и его разнообразные формы

Наука и техника
«Махнул пером – отдал сыграть...» «Махнул пером – отдал сыграть...»

Отнести ранние драматургические опыты Грибоедова к «комедийкам» будет неверно

Знание – сила
Время Льва. Зимнее небо Время Льва. Зимнее небо

Об одном из самых крупных зодиакальных созвездий — созвездии Лев

Наука и жизнь
Оттенок бургунди Оттенок бургунди

Квартира в современном московском ЖК выходит окнами на Москву-реку

Идеи Вашего Дома
Путешествие в Сибирь Путешествие в Сибирь

Атмосферные апартаменты, не имеющие аналогов в Тобольске

Идеи Вашего Дома
Возвращаться домой Возвращаться домой

Обновленный Geely Coolray и тяга к жизни

Автопилот
Смешанный стиль Смешанный стиль

Volkswagen, который пришел с Востока

Автопилот
К духам воды К духам воды

Шаманизм — важная составляющая жизни бурят. Каждый обряд проходит по-разному

Seasons of life
«Мониторинг магнитного поля — это наш компас» «Мониторинг магнитного поля — это наш компас»

Каково вырасти в семье политического деятеля и философа, а стать математиком?

Наука
Вишневая девятка Вишневая девятка

Что забыл Tiggo 9 в горах Алтая и о чем напомнил

Автопилот
Два вальса Два вальса

Грибоедов писал немало музыкальных произведений, однако большинство не записывал

Знание – сила
Открыть в приложении